class Block(nn.Module):
def __init__(self,
input_size,
output_size,
use_batch_norm=True,
dropout_p=.4):
self.input_size = input_size
self.output_size = output_size
self.use_batch_norm = use_batch_norm
self.dropout_p = dropout_p
super().__init__()
def get_regularizer(use_batch_norm, size):
return nn.BatchNorm1d(size) if use_batch_norm else nn.Dropout(dropout_p)
self.block = nn.Sequential(
nn.Linear(input_size, output_size),
nn.LeakyReLU(),
get_regularizer(use_batch_norm, output_size),
)
def forward(self, x):
# |x| = (batch_size, input_size)
y = self.block(x)
# |y| = (batch_size, output_size)
return y
class MyModel(nn.Module):
def __init__(self,
input_size,
output_size,
use_batch_norm=True,
dropout_p=.4):
super().__init__()
self.layers = nn.Sequential(
Block(input_size, 500, use_batch_norm, dropout_p),
Block(500, 400, use_batch_norm, dropout_p),
Block(400, 300, use_batch_norm, dropout_p),
Block(300, 200, use_batch_norm, dropout_p),
Block(200, 100, use_batch_norm, dropout_p),
nn.Linear(100, output_size),
nn.LogSoftmax(dim=-1),
)
def forward(self, x):
# |x| = (batch_size, input_size)
y = self.layers(x)
# |y| = (batch_size, output_size)
return y
model = MyModel(input_size,
output_size,
use_batch_norm=True)
crit = nn.NLLLoss()
optimizer = optim.Adam(model.parameters())